Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method
نویسندگان
چکیده
We study a multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method with geometrically graded meshes. Both hypersingular and weakly singular integral equations of the first kind are considered. As it is well known the h-p version with geometric meshes converges exponentially fast in the energy norm. However, the condition number of the Galerkin matrix in this case blows up exponentially in the number of unknowns M . We prove that the condition number κ(P ) of the multilevel additive Schwarz operator behaves like O( √ M logM). As a direct consequence of this we also give the results for the 2-level preconditioner and also for the h-p version with quasi-uniform meshes. Numerical results supporting our theory are presented.
منابع مشابه
Multiplicative Schwarz Algorithms for the Galerkin Boundary Element Method
We study the multiplicative Schwarz method for the p-version Galerkin boundary element method for a hypersingular and a weakly singular integral equation of the rst kind and for the h-version for a hypersingular integral equation of the rst kind. We prove that the rate of convergence of the multiplicative Schwarz operator is strictly less than 1 for the h-version for both two level and multilev...
متن کاملAdaptive Two-level Boundary Element Methods for the Single Layer Potential in Ir 3
We consider weakly singular integral equations of the rst kind on screens in IR 3. To obtain approximate solutions we use the hand p-versions of the Galerkin Boundary Element Method. We introduce two-level additive Schwarz operators with bounded condition numbers. Based on these operators we derive an a posteriori error estimate for the diierence between the exact solution and the approximate s...
متن کاملOn Non-overlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Finite Element Methods in H-type Norms
Abstract. We analyse the spectral bounds of non-overlapping domain decomposition additive Schwarz preconditioners for hp-version discontinuous Galerkin finite element methods in H-type norms. Using original approximation results for discontinuous finite element spaces, it is found that these preconditioners yield a condition number bound of order 1 + Hp/hq, where H and h are respectively the co...
متن کاملOptimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems
A local multilevel product algorithm and its additive version are analyzed for linear systems arising from the application of adaptive finite element methods to second order elliptic boundary value problems. The abstract Schwarz theory is applied to verify uniform convergence of local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes. By this abstract theory, co...
متن کاملElement Free Galerkin Method for Static Analysis of Thin Micro/Nanoscale Plates Based on the Nonlocal Plate Theory
In this article, element free Galerkin method is used for static analysis of thin micro/nanoscale plates based on the nonlocal plate theory. The problem is solved for the plates with arbitrary boundary conditions. Since shape functions of the element free Galerkin method do not satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary conditions. Discre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 67 شماره
صفحات -
تاریخ انتشار 1998